Clustering multivariate functional data
نویسندگان
چکیده
Model-based clustering is considered for Gaussian multivariate functional data as an extension of the univariate functional setting. Principal components analysis is introduced and used to define an approximation of the notion of density for multivariate functional data. An EM like algorithm is proposed to estimate the parameters of the reduced model. Application on climatology data illustrates the method.
منابع مشابه
An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملClustering multivariate functional data with phase variation.
When functional data come as multiple curves per subject, characterizing the source of variations is not a trivial problem. The complexity of the problem goes deeper when there is phase variation in addition to amplitude variation. We consider clustering problem with multivariate functional data that have phase variations among the functional variables. We propose a conditional subject-specific...
متن کاملRepeated Record Ordering for Constrained Size Clustering
One of the main techniques used in data mining is data clustering, which has many applications in computer science, biology, and social sciences. Constrained clustering is a type of clustering in which side information provided by the user is incorporated into current clustering algorithms. One of the well researched constrained clustering algorithms is called microaggregation. In a microaggreg...
متن کاملGeneralization of Canonical Correlation Analysis from Multivariate to Functional Cases and its related problems
In multivariate cases, the aim of canonical correlation analysis (CCA) for two sets of variables x and y is to obtain linear combinations of them so that they have the largest possible correlation. However, when x and y are continouse functions of another variable (generally time) in nature, these two functions belong to function spaces which are of infinite dimension, and CCA for them should b...
متن کاملModel-based clustering for multivariate functional data
This paper proposes the first model-based clustering algorithm for multivariate functional data. After introducing multivariate functional principal components analysis (MFPCA), a parametric mixture model, based on the assumption of normality of the principal components, is defined and estimated by an EM-like algorithm. The main advantage of the proposed model is its ability to take into accoun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017